METHODS

C3H/HeN mice were infected with *Pneumocystis murina* intranasally at 2 x 10^6/50 µL after immunosuppression with dexamethasone. Mice were administered vehicle as a negative control (C/S), trimethoprim/sulfamethoxazole (T/S) as a positive control, caspofungin as a comparator (C/S), trimethoprim/sulfamethoxazole (T/S) at week 14 (Fig. 2).

Study drug administration was stopped at 2, 4, 6, and 8 weeks, at which time mice were immunosuppressed for an additional 6 weeks to allow any residual *P. murina* to re-activate. Mice were then euthanized, and lungs were processed for analysis of nuclei and asci.

RESULTS

All rezafungin dose regimens at all timepoints significantly reduced both nuclei and asci burdens versus the C/S group (Fig. 1). After 4 weeks of rezafungin prophylaxis (plus 6 weeks additional immunosuppression [Week 10 timepoint]; Fig. 1), both groups given rezafungin 20 mg/kg (3x/wk and 1x/wk) prevented *P. murina* organisms from activating infection. After 6 and 8 weeks of rezafungin prophylaxis plus 6 weeks additional immunosuppression (Week 12 and 14 timepoints; Fig. 1), no re-activation of infection was present in any of the study groups. After 2 and 4 weeks of prophylaxis (plus 6 weeks additional immunosuppression [Week 8 and 10 timepoints; Fig. 1], there was a significant reduction of nuclei and asci counts in all groups of rezafungin versus caspofungin.

After 2, 4, and 6 weeks of rezafungin prophylaxis plus 6 weeks additional immunosuppression, there was a significant reduction of nuclei and asci counts between all groups of rezafungin versus caspofungin.

CONCLUSIONS

• Prophylaxis with rezafungin for durations as short as 4 weeks prevented *P. murina* organisms from developing infection after cessation of therapy and showed more efficacy than caspofungin.

• These results provide evidence that rezafungin can prevent *Pneumocystis* reactivation and that such regimens hold promise for prophylaxis against *Pneumocystis* in at-risk patients undergoing blood and marrow transplantation.

REFERENCES

3. Cushion MT, et al. ASM Microbe 2016; Jun 16-20, 2016; Boston, MA.

DISCLOSURES / ACKNOWLEDGEMENTS

Author disclosures: M. Cushion (consultancy and research funding; Cidara Therapeutics), A. Ashbaugh (none), and V. Ong (employee, stockholder; Cidara Therapeutics). Editorial support was provided by T. Chung (Scribant Medical) with funding by Cidara Therapeutics.