

Efficacy of a Novel Echinocandin, CD101, in a Mouse Model of Azole-Resistant Disseminated Candidiasis

L. Miesel¹, K-Y Lin¹, J. C. Chien¹, M. L. Hsieh¹, V. Ong², and K. Bartizal²

¹Eurofins Panlabs, Taipei, Taiwan

²Cidara Therapeutics Inc., San Diego, CA

LynnMiesel@eurofins.com

Disclosures

- Lynn Miesel is a Eurofins Pharma Discovery Services employee.
- This research was performed under contract between Eurofins Panlabs Taiwan and Cidara Therapeutics.

Rationale

- Candidiasis is becoming more prevalent among nosocomial infections, ranking fourth among BSIs in the USA (1)
- C. albicans is the predominant cause but non-albicans species are increasingly prevalent
- Resistance to azole antifungals is now more common due to widespread fluconazole use
- The IDSA and ESCMID now recommend echinocandins as firstline treatment (2, 3)
- This study aimed to test CD101 for potential use against azoleresistant candidiasis using a disseminated mouse infection model
 - (1) M. Sanguinetti, B. Posteraro, and C. Lass-Flörl. 2015 Mycoses. 58 p2-13
 - (2) PG Pappas et al. 2015 Clinical Infectious Disease
 - (3) OA Cornely et al. 2012 Clin Microbiol Infect. 18 Suppl 7 p19–37

CD101, a highly stable echinocandin

HÓ

- Enhanced chemical stability
- Long-acting pharmacokinetics
- In development for once-weekly therapy

Half-life (hr)

Species	Caspofungin ^a Anidulafungin ^b		CD101b
SD Rat	6-7	22	30
Dog	N/A	12	53
Cyno Monkey	N/A	8	40
Chimpanzee	5-8	30	81

a. R. Hajdu, et al. Antimicrob. Agents Chemother. (1997) 41:2339–2344

b. K. James, et al. ICAAC (2014) A-693 and A-694

In vitro potency of CD101 against C. albicans

Candida albicans 2012 – 2014 clinical isolates (n=100)*

	Azole- susceptible (<i>n</i> =90)	Fluconazole-resistant (<i>n</i> =10)
MIC ₉₀ (μg/mL)	0.03	0.03

 CD101 has potent in vitro activity against azole-susceptible and -resistant clinical isolates

^{*}D Hall, R Bonifas, DL Shinabarger, and CM Pillar. Evaluation of the In Vitro Activity of CD101, a Novel Echinocandin, and Comparators Against Recent Clinical Isolates of Candida spp. ICAAC/ICC (2015) M-850

Azole-resistant *C. albicans* R357

C. albicans strain R357 is an azole-resistant human blood isolate

Antifungal agent	Endpoint (% inhibition)	MIC (µg/mL)	Susceptibility (CLSI)
Fluconazole	50%	>64	R
Voriconazole	50%	>64	R
Posaconazole	50%	>64	
Amphotericin B	100%	0.5	S
Caspofungin	50%	0.25	S
CD101	50%	0.125	

Azole resistance in R357

- CaERG11 increased expression: 12.3x
- CaERG11 changes: D116E, D153E, and E266D
- No significant changes in CDR1 or MDR1 expression

Azole-resistant *C. albicans* R357 disseminated infection model

Host: ICR Mouse

Procedure

- Neutropenia cyclophosphamide (cpm) days -4, -1
- Infection, Candida albicans R357, 10⁵ CFU/mouse
- Test article administration: one (qd) dose
 - 2 hr after infection
 - Vehicle, CD101 Intraperitoneal (IP)
 - Amphotericin B (AM-B) Intravenous (IV)
 - Fluconazole (FLU) oral (PO)
- Kidney counts (CFU /g) 48, 72 hr after infection

Model development – vary the inoculum density

Inoculum count (CFU); Infection duration (hr)

Azole-resistant *C. albicans* R357 disseminated infection model

Azole-resistant *C. albicans* R357 disseminated infection model

Efficacy of antifungals - fungal counts

#p < 0.05 vs. vehicle

Azole-resistant *C. albicans* R357 disseminated infection model

Efficacy of antifungals - difference in counts

Conclusions

- CD101, a novel echinocandin, demonstrated efficacy in a disseminated infection model of azole-resistant candidiasis
- Efficacy persisted 72 hr consistent with long-acting pharmacokinetics
- CD101 treatment resulted in a fungicidal effect