Echinocandin PK-PD

• Echinocandins have only been in use for 10 years, caspofungin being the first approved agent in 2001

• In vitro and in vivo, echinocandins display a concentration-dependent pattern of activity against Candida spp¹
 - That is, as drug concentration increases, so too does the extent and rate of microbial killing

• The PK-PD index that best describes antifungal activity varies among echinocandins

CD101, a Novel Echinocandin

- Developed by Cidara Therapeutics, CD101 is a structural analog of anidulafungin
 - Long acting echinocandin
 - Reduced hepatotoxicity
 - Intravenous and topical formulations
- Currently entering Phase 1 clinical development for candidemia and invasive candidiasis
There were two objectives of these studies:

- To determine the pharmacodynamics driver most closely associated with CD101 efficacy
- To determine the magnitude of the PK-PD measure associated with net fungal stasis and a 1- and 2-\log_{10} CFU reduction from baseline
Pharmacokinetics Studies

- Plasma PK data were obtained from neutropenic mice administered a single dose of CD101.
- 5 mice per time point per dose.
- Plasma samples were assayed for CD101 using LC/MS/MS with a lower limit of quantification of 0.02 μg/mL.

<table>
<thead>
<tr>
<th>Study</th>
<th>Route of Administration</th>
<th>Doses (mg/kg)</th>
<th>Sampling Times (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB26207</td>
<td>Intravenous</td>
<td>0.4</td>
<td>3, 6, 12, 24, 36, 48</td>
</tr>
<tr>
<td>“Other”</td>
<td>Intravenous</td>
<td>1</td>
<td>0.083, 0.5, 1, 4, 8, 24, 48, 72</td>
</tr>
<tr>
<td>AB29611</td>
<td>Intraperitoneal</td>
<td>1, 4, 16</td>
<td>0, 1, 3, 6, 12, 24, 48, 72, 96</td>
</tr>
</tbody>
</table>
Dose-Fractionation Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Route of Administration</th>
<th>Treatment Start<sup>a</sup> (h)</th>
<th>Daily Doses (mg/kg)</th>
<th>Dosing Intervals (h)</th>
<th>Observation Time<sup>b</sup> (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB26207</td>
<td>Intravenous</td>
<td>2</td>
<td>0.4, 0.8</td>
<td>6, 8, 12, 24</td>
<td>3, 6, 12, 24, 36, 48</td>
</tr>
<tr>
<td>AB29211</td>
<td>Intraperitoneal</td>
<td>24</td>
<td>3, 30</td>
<td>6, 8, 12, 24</td>
<td>48, 96, 192</td>
</tr>
</tbody>
</table>

^aRelative to inoculation

^bRelative to treatment start

- Male ICR mice (5 per regimen and observation time) were rendered neutropenic by two IP cyclophosphamide injections

- Animals were inoculated with *Candida albicans* R303 (2.6 x 10³ CFU/mouse) via tail vein

- Treatment duration was 48 hours in both studies

- Paired kidneys were harvested, homogenized, serially diluted, and plated for CFU determination
METHODS

PK and PK-PD Modeling

• Data from the PK studies were analyzed using S-ADAPT
 o Population models fit to the data
 o Exposures for PK-PD dosing regimens generated using post-hoc PK parameters

• Data from the efficacy studies were modeled using a Hill-type model and non-linear least squares regression
 o The relationship between \(\log_{10} \text{CFU at 24 h} \) and \(\text{AUC}_{0-24} : \text{MIC} \), \(\text{C}_{\text{max}} : \text{MIC} \) and \(\%T>\text{MIC} \) was evaluated
Mouse PK Differences Due to Route

RESULTS

Dose (mg/kg)
- 0.4
- 1
- 4
- 16

Study
- AB26207
- AB29611
- OTHERSTUDY

Dose-Normalized CD101 Conc. (ug/mL)

Time Since Dose (h)
RESULTS
Pharmacokinetics Studies

![Graphs showing the concentration of CD101 over time for different doses and routes of administration.]

- **1 mg/kg IP**
- **4 mg/kg IP**
- **16 mg/kg IP**
- **0.4 mg/kg IV**
- **1 mg/kg IV**
RESULTS

Comparison of PK-PD Data

![Graph showing comparison of PK-PD data for AB26207 and AB29611. The x-axis represents time post-inoculation (h), and the y-axis represents change in Log_{10} CFU. The graph includes data points for different treatment groups, such as CD101 and Vehicle, with various daily doses (0, 0.4, 0.8, 3, 30 mg/kg).]
RESULTS
PK-PD Correlations – IV Dosing

The data in these figures is from the 0.4 mg/kg arm of AB26207 only.
RESULTS

PK-PD Correlations – CD101 IP Dosing

$r^2 = 0.844$

$r^2 = 0.847$

$r^2 = 0.847$

Free-Drug AUC:MIC

Free-Drug C_{max}:MIC

Free-Drug %T>MIC

Change in \log_{10} CFU

Legend:
- Red: Control
- Blue: Q6
- Green: Q8
- Orange: Q12
- Purple: Q24
RESULTS

PK-PD Correlations – CD101 IP Dosing

<table>
<thead>
<tr>
<th>Parameter<sup>a</sup></th>
<th>$f_{\text{AUC}:\text{MIC}}$</th>
<th>$f_{\text{Cmax}:\text{MIC}}$</th>
<th>%T>MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV</td>
<td>IP</td>
<td>IV</td>
</tr>
<tr>
<td>E_0</td>
<td>2.29 (0.14)</td>
<td>1.58 (0.16)</td>
<td>2.29 (0.13)</td>
</tr>
<tr>
<td>Emax</td>
<td>4.40 (0.20)</td>
<td>2.77 (0.44)</td>
<td>4.39 (0.20)</td>
</tr>
<tr>
<td>Hill</td>
<td>31.8 (5.14)</td>
<td>1.00 (2.51)</td>
<td>18.1 (2.92)</td>
</tr>
<tr>
<td>EC$_{50}$</td>
<td>6.52 (0.04)</td>
<td>5.16 (15.6)</td>
<td>0.51 (0.00)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnitude<sup>b</sup></th>
<th>$f_{\text{AUC}:\text{MIC}}$</th>
<th>$f_{\text{Cmax}:\text{MIC}}$</th>
<th>%T>MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stasis</td>
<td>6.53</td>
<td>6.84</td>
<td>0.51</td>
</tr>
<tr>
<td>1-log$_{10}$ drop</td>
<td>6.73</td>
<td>70.1</td>
<td>0.54</td>
</tr>
<tr>
<td>2-log$_{10}$ drop</td>
<td>7.32</td>
<td>NA</td>
<td>0.62</td>
</tr>
</tbody>
</table>

^aPK-PD parameters reported as mean (SE)

^bMagnitude of the PK-PD index associated with the given effect
DISCUSSION

What have we learned?

- Dose-fractionation studies did not discriminate between the three PK-PD indices
 - This is likely due to CD101’s long half-life in mice ($t_{1/2} \sim 45-70$ h)
 - Repeat studies with lower doses may help to break the colinearity between $C_{\text{max}}:\text{MIC}$, $\text{AUC}_{0-24}:\text{MIC}$ and $\%T>\text{MIC}$
- Like other echinocandins, the $\text{AUC}_{0-24}:\text{MIC}$ ratio described the relationship between exposure and response well
- Despite the pronounced differences in the design of the IV and IP dose-fractionation studies, the magnitude of the PK-PD indices necessary to effect stasis in fungal growth were similar
- We recommend $\text{AUC}_{0-24}:\text{MIC}$ over $C_{\text{max}}:\text{MIC}$ and $\%T>\text{MIC}$ for dose optimization as AUC is more precisely estimated
INSTITUTE FOR CLINICAL PHARMACODYNAMICS

Christopher M. Rubino, Pharm.D.
Brian D. VanScoy, B.S.
Paul G. Ambrose, Pharm.D., FIDSA
Michael Trang, Pharm.D.
Justin C. Bader, Pharm.D., M.B.A.

CIDARA THERAPEUTICS

Voon Ong, Ph.D.
Ken Bartizal, Ph.D.
Dirk Thye, M.D.

EUROFINS PANLABS, Inc.
THANK YOU FOR YOUR ATTENTION