Preclinical Efficacy, Pharmacokinetics, and Safety of CB-012, a Novel Antiviral Fc-Conjugate Against Influenza

V. Ong1, J. Levin1, A. Borchardt1, T. Lam1, W. Jiang1, Z. Chen1, Q. Do1, T. Brady1, A. Noncovich1, J. Fortier1, S. Akens-Rodriguez1, D. Bensen1, A.L. Chenine2, K. Amundson3, J.B. Locke1, J. Donatelli4, C. La Chatil4, A. Almaguer1, G. Hough1, J. Cole1, S. Döhrmann1, R. Grewal5, E. Abolevski6, J. Balkovec7, K. Bartzitz8, L. Tari9
1Cidara Therapeutics, San Diego, CA, USA; 2IBT Bioservices, Rockville, MD

INTRODUCTION

Cidara Therapeutics is developing a novel class of potent, long-acting antiviral Fc-conjugates (AVCs) against influenza that, in a single molecule, combine a surface-acting antiviral agent with the Fc domain of a human IgG1 antibody. AVCs directly inhibit viral dissemination and infection while simultaneously engaging the immune system, providing a multimodal mechanism of action. CB-012 is an AVC candidate comprising a potent antiviral agent that directly targets influenza A and B, conjugated to human IgG1. CB-012 has demonstrated robust treatment efficacy in lethal mouse models of influenza. Studies were conducted to assess its pharmacokinetics (PK), safety/tolerability, and efficacy in a prevention (prophylaxis) model.

METHODS

- CB-012 stability was assessed after 0- to 24-hour incubations in mouse/human plasma and liver microsomes at 37°C using MALDI-TOF mass spectrometry.
- Single-dose PK was studied after dosing in mice (1–50 mg/kg), rat (5–50 mg/kg), and monkey (5–20 mg/kg). Plasma was at selected times and concentrations were measured using ELISA.
- Efficacy in prevention of influenza infection was studied in a lethal mouse model using a single dose of CB-012 (1.25, 2.5, 5, 10 and 50 mg/kg; n=5/dose) that was administered 28 days prior to intranasal challenge with an LD50 (~75 PFU/mouse) of A/Texas/3691 (H1N1).
- Two-week safety/toxicology was evaluated in rats, mice, monkeys (rats up to 50 mg/kg, monkeys up to 20 mg/kg). Plasma was at selected times.
- Stability of CB-012 was assessed after 0- to 24-hour incubations in mouse/human plasma and liver microsomes at 37°C using MALDI-TOF mass spectrometry.

RESULTS

Stability of CB-012 was verified in mouse/human plasma and liver microsomes prior to in vivo studies.

Subsequently, PK studies in the mouse, rat, and monkey, confirmed the low clearance of CB-012 in plasma with effective half-lives of 7 to 10 days in all 3 groups.

Across all doses tested to date, dose-proportional increases in exposure has been observed in each species: mouse, 1–50 mg/kg; rat, 5–50 mg/kg; monkey, 5–20 mg/kg.

RESULTS (cont’d)

High bioavailability (>65%) was observed in the rat and monkey after subcutaneous administration allowing for more dosing flexibility. Further, CB-012 plasma elimination after IV dosing remained linear for at least a month post-dose with no evidence of anti-drug antibodies.

In rat and monkey toxicity studies, animals were administered CB-012 once weekly for 2 weeks by IV (slow bolus) injection. Toxicokinetic parameters were measured and exposures were confirmed to be at least 10-fold higher than needed for efficacy. In rats and monkeys, CB-012 was well tolerated and there was no effect on bodyweight, clinical chemistry, hematology, cytokines, or urinalysis. Histological findings related to CB-012 were absent at all doses tested (rat up to 50 mg/kg, monkey up to 20 mg/kg).

CONCLUSIONS

CB-012 displayed extended systemic exposure in animals that translated to long duration of action and efficacy in an influenza prophylaxis mouse model. Its safety and prolonged half-life underscore the potential of CB-012 as a long-acting, novel antiviral for prevention and treatment of influenza in humans. These findings demonstrate the benefit of AVCs as a new multimodal strategy against influenza.

REFERENCES