Comparison of killing activity of rezafungin, anidulafungin, caspofungin and micafungin against *Candida auris* in the presence and absence of serum

Zoltán Tóth, Lajos Forgács, Jeffrey B. Locke, Gábor Kardos, Fruszina Nagy, Renátó Kovács, Andrew M. Borman, László Majoros

1Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary,
2Cidara Therapeutics, Inc., 6310 Nancy Ridge Dr., Suite 101, San Diego, CA 92121, USA,
3UK National Mycology Reference Laboratory (MRL), Public Health England South-West, Bristol, UK

L. Majoros major@med.unideb.hu

INTRODUCTION

Candida auris is an emerging, difficult-to-treat, multiresistant pathogen against which echinocandins are the recommended standard-of-care treatment (1). Rezafungin is a next-generation echinocandin with similar *in vitro* activity to existing echinocandins, yet it attains much higher *in vivo* concentrations and exposures due to its extended half-life and front-loaded dosing paradigm (2). Because *in vitro* killing data against *C. auris* are limited for existing echinocandins and are lacking for rezafungin, we compared rezafungin to anidulafungin, caspofungin, and micafungin in *time-kill* assays against *C. auris* isolates in standard RPMI-1640 medium. We also investigated the impact of serum on *in vitro* killing trends.

METHODS

Two *C. auris* clinical isolates from each clade (Japanese/Korean, South Asian/Indian and South African, obtained from the National Mycology Reference Laboratory, UK) were tested. Both South African isolates were autoaggregative. MICs in RPMI-1640 +50% human serum were determined using the standard broth macrodilution method (CLSI M27 Ed4). *Time-kill* studies with the four echinocandins were performed from 0.25 to 32 mg/L in both media, and killing rates were compared (3). Positive *k* values indicate killing; negative values indicate growth.

RESULTS

Table 1. MIC values for rezafungin and echinocandin comparators against *C. auris* strain in the presence and absence of 50% serum.

<table>
<thead>
<tr>
<th>Clade</th>
<th>Isolate</th>
<th>MIC values in RPMI/RPMI + 50% serum (mg/L)</th>
<th>rezafungin</th>
<th>anidulafungin</th>
<th>caspofungin</th>
<th>micafungin</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Asia/India</td>
<td>12</td>
<td>0.05/0.06/0.5, 0.12/0.5/1, 1/0.5/1, 0.12/0.25/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan/Korea</td>
<td>27</td>
<td>0.12/1, 0.12/2, 0.5/2, 0.25/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>209</td>
<td>0.06/0.5, 0.03/0.5, 0.25/0.5, 0.12/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.05/0.25/0.5, 0.03/0.06/1, 0.5/1, 0.12/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>0.06/0.25/0.5, 0.03/1, 0.25/0.5/1, 0.12/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.12/1-2, 0.03/1-2, 0.5/1, 0.25/2-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In RPMI-1640, at 1xMIC or higher concentrations, all four echinocandins showed only fungistatic effect (Figure 1). None of the echinocandins produced any CFU decrease against aggregating isolates (*k* values in cases of isolates 2 and 204 were always negative). Similar results were found in cases of caspofungin and micafungin against isolates 12, 15 and 204, and isolate 15, respectively. Re-growth was frequently observed for all four echinocandins.

Figure 1. Mean killing rate (*k*) values of the four echinocandins against three *C. auris* clades in RPMI-1640 medium.

REFERENCES

CONCLUSIONS

- Killing activity in RPMI-1640 alone was less consistently positive than in 50% serum, and only fungistatic activity was detected in both media. An optimal medium for testing killing activity remains to be found.
- Aggregative isolates were less susceptible to echinocandins than non-aggregative isolates.
- Differences were detected in the killing activity of echinocandins against different *C. auris* clades.
- Rezafungin showed similar or better activity than anidulafungin and micafungin at clinically attainable concentrations.
- The trend towards stronger killing activity in the presence of serum may account for the disconnect between the modest activity of echinocandins *in vitro* time-kill tests and their strong *in vivo* efficacy against *C. auris*. This was previously demonstrated in case of rezafungin in animal models (4,5).

ACKNOWLEDGEMENTS

This study was funded by European Union and cofinanced by the European Social Fund. Zoltán Tóth and Fruszina Nagy were supported by the UNKP-18-3 New National Excellence Program of the Ministry of Human Capacities. Study material (RZF powder) and editorial support (T. Chung, SorkinBi Medical) was provided by Cidara Therapeutics.